Parallel Screening of Wild-Type and Drug-Resistant Targets for Anti-Resistance Neuraminidase Inhibitors
نویسندگان
چکیده
Infection with influenza virus is a major public health problem, causing serious illness and death each year. Emergence of drug-resistant influenza virus strains limits the effectiveness of drug treatment. Importantly, a dual H275Y/I223R mutation detected in the pandemic influenza A 2009 virus strain results in multidrug resistance to current neuraminidase (NA) drugs. Therefore, discovery of new agents for treating multiple drug-resistant (MDR) influenza virus infections is important. Here, we propose a parallel screening strategy that simultaneously screens wild-type (WT) and MDR NAs, and identifies inhibitors matching the subsite characteristics of both NA-binding sites. These may maintain their potency when drug-resistant mutations arise. Initially, we analyzed the subsite of the dual H275Y/I223R NA mutant. Analysis of the site-moiety maps of NA protein structures show that the mutant subsite has a relatively small volume and is highly polar compared with the WT subsite. Moreover, the mutant subsite has a high preference for forming hydrogen-bonding interactions with polar moieties. These changes may drive multidrug resistance. Using this strategy, we identified a new inhibitor, Remazol Brilliant Blue R (RB19, an anthraquinone dye), which inhibited WT NA and MDR NA with IC(50) values of 3.4 and 4.5 µM, respectively. RB19 comprises a rigid core scaffold and a flexible chain with a large polar moiety. The former interacts with highly conserved residues, decreasing the probability of resistance. The latter forms van der Waals contacts with the WT subsite and yields hydrogen bonds with the mutant subsite by switching the orientation of its flexible side chain. Both scaffolds of RB19 are good starting points for lead optimization. The results reveal a parallel screening strategy for identifying resistance mechanisms and discovering anti-resistance neuraminidase inhibitors. We believe that this strategy may be applied to other diseases with high mutation rates, such as cancer and human immunodeficiency virus type 1.
منابع مشابه
Construction of a convenient system for easily screening inhibitors of mutated influenza virus neuraminidases☆
Neuraminidase (NA) is a surface glycoprotein produced by the influenza virus. Specific NA mutations that confer resistance to anti-viral drugs have been reported. The aim of this study was to demonstrate quick preparation of the mutated NAs using the yeast surface display and its applicability for screening inhibitors. Plasmids encoding the head domain of wild-type and drug-resistant NAs were c...
متن کاملIdentification and Evaluation of Novel Drug Targets against the Human Fungal Pathogen Aspergillus fumigatus with Elaboration on the Possible Role of RNA-Binding Protein
Bakground: Aspergillus fumigatus is an airborne opportunistic fungal pathogen that can cause fatal infections in immunocompromised patients. Although the current anti-fungal therapies are relatively efficient, some issues such as drug toxicity, drug interactions, and the emergence of drug-resistant fungi have promoted the intense research toward finding the novel drug targets. Methods: In searc...
متن کاملStructure Optimization of Neuraminidase Inhibitors as Potential Anti-influenza (H1N1Inhibitors) Agents Using QSAR and Molecular Docking Studies
The urgent need of neuraminidase inhibitors (NI) has provided an impetus for understanding the structure requisite at molecular level. Our search for selective inhibitors of neuraminidase has led to the identification of pharmacophoric requirements at various positions around acyl thiourea pharmacophore. The main objective of present study is to develop selective NI, with least toxicity and dru...
متن کاملEmergence of a novel drug resistant H7N9 influenza virus: evidence based clinical potential of a natural IFN-α for infection control and treatment.
The novel avian H7N9 influenza virus has caused more than 130 human infections with 43 deaths (as of September, 2013) in China. Because of the lack of existing immunity against H7 subtype influenza viruses in the human population and the absence of a licensed commercial vaccine, antiviral drugs are critical tools for the treatment of infection with this novel H7N9. Both M2-ion channel blockers ...
متن کاملStructure Optimization of Neuraminidase Inhibitors as Potential Anti-influenza (H1N1Inhibitors) Agents Using QSAR and Molecular Docking Studies
The urgent need of neuraminidase inhibitors (NI) has provided an impetus for understanding the structure requisite at molecular level. Our search for selective inhibitors of neuraminidase has led to the identification of pharmacophoric requirements at various positions around acyl thiourea pharmacophore. The main objective of present study is to develop selective NI, with least toxicity and dru...
متن کامل